
ocona -T nrliI IMENTATION PAGE IOPM " ,
d to aer~ aw perd aMflnwe. iqeidu the buuduiwWi mt*m W unI Ohw mped~i 0cisith "liao .4EUmgeon MesdAD -A273 948 -. a=-s.=.-.o=.===d•. =AD- P.23t ~sq 4 S.ne Osmd.04 gin bl~nuemion Opovetan. md aR• . 1215 Jcihgun Davis Hi4hwS. S~" ¶204. Av~ngl. VA.Offnsof Ma rerntad &Wgal.W,,-hington. DC: 2N(,o

4. TITLE AND 5. FUNDING f

RISCAE TRW RH32-targeted Ada Compiler, 1.0, Host: DEC VAXsta ion
4000 , Target: RISCAE TRW RH32 Simulator running on the host
930901W1.11321

6.

Authors:

Wright-Patterson AFB
7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING

Ada Validating Facility, Language Control Facility ASD/SCEL ORGANIZATON

Bldg. 676, Room 135
Wright Patterson AFB, Dayton OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSORING/MONITORING

Ada Joint Program Mffice AGENCY

The Pentagon, FRn 3E118
Washington, DC 20301-3080 ELECTE

DEC 14 1993
11. SUPPLEMENTARY AA A

12a. DISTRIBUTION/AVAILABILITY 12b. DISTRIBUTION
Approved for public release; distribution unlimited

13. (Maximum 200
RISCAE TRW RH32-targeted Ada Compiler, 1.0, Host: DEC VAXstation 4000, Target: RISCAE
TRW RH32 Simulator running on the host , ACVC 1.11

14. SUBJECT 15. NUMBER OF

Ada programming language, Ada Compiler Val. Summary Report, Ada Comp 16. PRICE

AAIf/AL_.S4PT9HAt~yA '.- Testing, Ada Val. Office, Ada Val. Facili y
If SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF

CLASSIFICATION CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
N•N Standwd Form 29e. (Rev. 2-89)

PrPalbed by ANSI Sl.

AVF Control Number: AVF-VSR-568.0893
Date VSR Completed: 16 September 1993

93-07-12-INT

Ada COMPILER
VALIDATICN SUMMARY REPORT:

Certificate Number: 930901WI.11321
Intermetrics Inc.

RISCAE TM RH32-targeted Ada Compiler, 1.0
DEC VAXstation 4000 under VMS, 5.5 ->

RISCAE TRW RH32 Simulator running on the host under VMS, 5.5

(Final)

Prepared By:
Ada Validation Facility

645 C-CSG/SCSL
Wright-Patterson AFB OH 45433-6503

93-30268

Certificate information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 1 September 1993.

Compiler Name and Version: RISCAE TRW RH32-targeted Ada Compiler, 1.0

Host Computer System: DEC VAXstation 4000
under VMS, 5.5

Target Computer System: RISCAE TRW RH32 Simulator running on the host
under VMS, 5.5

Customer Agreement Number: 93-07-12-INT

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate 930901W.11321
is awarded to Intermetrics Inc. This certificate expires two years after
MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Ada Validation Facility Nils C' ~) -
Dale E. LangeDU F:
Technical Director U~
645 CCSG/SCSL t
Wright-Patterson AFB OH 45433-6503 -

By

AdVd Organization
Intiut ter and Software Engineering Division Dist AV"!Direto e~WD nseAnalyses

Alexandria VA22311

AaJoint Program 0fic ccC U~rM. Dirk Rogers, M~ajor, USAFTCQALT ~SP~r
Acting Director
Department of Defense
Washington DC 20301

DECLARATION OF CaaYOBMANCE

The following declaration of conformance was supplied by the customer.

Declaration of Conformance

Customer: Intermetrics Inc.

Ada Validation Facility: 645 C-CSG/SCSL
Wright-Patterson AFB OH 45433-6503

ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name and Version: RISCAE TFU RH32-targeted Ada Compiler, 1.0

Host Computer System: DEC VAXstation 4000
under VMS, 5.5

Target Computer System: RISCAE TRW RH32 Simulator running on the host

under VMS, 5.5

Declaration:

I, the undersigned, declare that I have no
knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation
listed above.

Cu•stomer SignAture Date

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE•OF THIS VALIDATISUMMARYREPORT 1-1
1.2 REFERCES 1-2
1.3 ACY TEST LASSES 1-2
1.4 DEFINITICN OF TERMS 1-3

CHAPTER 2 IMPLEMETEATION DEPENDENCIES

2.1 WITHDR TESTS2-1
2.2 INAPPLICABLE TESTS. 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIROMENT 3-1
3.2 SMMARY OF TEST RESULTS3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTROdCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures (Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Sunmary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
(Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering nivision
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference manual for the Ada Progra mi anuage,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

(UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Tdentity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not opirating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTROUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and (UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-l815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMETTIMt DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203A C34006D C35508I C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D C83026A B83026B C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BDlB02B BDIBO6A ADIBO8A BD2AO2A CD2A2lE
CD2A23E CD2A32A CD2A4IA CD2A4lE CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEKl!NTION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAXMANTISSA is leis than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various- floating-point operations lie outside the range of the base
type; for this implementation, MACHINE OVERFLOS is TRUE.

D55AO3E..H (4 tests) use 31 levels of loop nesting; this level of loop
nesting exceeds the capacity of the compiler.

D64005G uses 17 levels of recursive procedure calls nesting; this
level of nesting for procedure calls exceeds the capacity of the
compiler.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009C and CA2009F check whether a generic unit can be instantiated
before its body (and any of its subunits) is compiled; this
implementation creates a dependence on generic units as allowed by
AI-00408 and AI-00506 such that the compilation of the generic unit
bodie.. makes the instantiating units obsolete. (See section 2.3.)

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

2-2

IMPLE1ENTATION DEPED CIES

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT 10
with unconstrained array types and record types with discriminants
without defaults; these instantiations are rejected by this compiler.

The following 260 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) CE2201F..N (9) CE2203A CE2204A..D (4)
CE2205A CE2206A CE2208B CE2401A..C (3)
CE2401E..F (2) CE2401H..L (5) CE2403A CE2404A..B (2)
CE2405B CE2406A CE2407A..B (2) CE2408A..B (2)
CE2409A..B (2) CE2410A..B (2) CE2411A CE3102A..C (3)
CE3102F..H (3) CE3102J..K (2) CE3103A CE3104A..C (3)
CE3106A..B (2) CE3107B CE3108A..B (2) CE3109A
CE3110A CE3111A..B (2) CE3111D..E (2) CE3112A..D (4)
CE3114A..B (2) CE3115A CE3119A EE3203A
EE3204A CE3207A CE3208A CE3301A
EE3301B CE3302A CE3304A CE3305A
CE3401A CE3402A EE3402B CE3402C..D (2)
CE3403A..C (3) CF3403E..F (2) CE3404B..D (3) CE3405A
EE3405B CE3405C..D (2) CE3406A..D (4) CE3407A..C (3)
CE3408A..C (3) CE3409A CE3409C..E (3) EE3409F
CE3410A CE3410C..E (3) EE3410F CE3411A
CE3411C CE3412A EE3412C CE3413A..C (3)
CE3414A CE3602A..D (4) CE3603A CE3604A..B (2)
CE3605A..E (5) CE3606A..B (2) CE3704A..F (6) CE3704M..O (3)
CE3705A..E (5) CE3706D CE3706F..G (2) CE3804A..P (16)
CE3805A..B (2) CE3806A..B (2) CE3806D..E (2) CE3806G..H (2)
CE3904A..B (2) CE3905A..C (3) CE3905L CE3906A..C (3)
CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an attempt
to create a file and expect NAME ERROR to be raised; this
implementation does not support external files and so raises
USEERROR. (See section 2.3.)

2-3

IMPLEMENEATION DEPEDENCIES

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 10 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22003A B83033B B85013D

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the separate compilation of that unit's body; as allowed by
AI-257, this implementation requires that the bodies of a generic unit be
in the same compilation if instantiations of that unit precede the bodies.
The implementation issues error messages at link time that the main program
"has unresolved generic instantiations" and the tests cannot be executed.

BC3204C and BC3205D were graded passed by Processing Modification as
directed by the AVO. These tests check that instantiations of generic
units with unconstrained types as generic actual parameters are illegal if
the generic bodies contain uses of the types that require a constraint.
However, the generic bodies are compiled after the units that contain the
instantiations, and this implementation creates a dependence of the
instantiating units on the generic units as allowed by AI-00408 and
AI-00506 such that the compilation of the generic bodies makes the
instantiating units obsolete-no errors are detected. The processing of
these tests was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CE2103A, CE2103B, and CE3107A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests abort with an unhandled
exception when USE ERROR is raised on the attempt to create an external
file. This is acceptable behavior because this implementation does not
support external files (cf. AI-00332).

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRXXTM

The Ada implementation tested in this validation effort is described

adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Mike Ryer
Intermetrics Inc.
733 Concord Avenue
Cambridge MA 02138-1002
(617) 661-1840

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation's maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system - if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b

3-1

PROCESSING INFORMATIOXN

and f, below).

a) Total Number of Applicable Tests 3575
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 39
d) Non-Processed I/O Tests 260
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 500 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A TK-50 cartridge tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The contents
of the TK-50 cartridge tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the computer system, as appropriate,
and run. The results were captured on the computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option/Switch Effect

Compiler Options
/LIST Generate a compilation listing with default

listing format. Used for E tests.

-lc Generate a compilation listing with continuous
listing format. Used for all other tests.

Program Builder options
/PASS-llink_options Pass options to the linker locator.

Linker/Locator options
/LL-adabase: [lib]trwmpk.lbl

Name of library index file to be used for
unresolved references.

/C-adabase: [libltrwmpk.llc
Name of file containing locator commands.

3-2

PROCESSING INFORWICN

/SE Eliminate unreferenced segments.

/US-("atatOOl","rtl stack", "address space descriptor")
Mark indicated symbols as referenced before
determining unreferenced segments.

Test output, compiler and linker listings, and job logs were captured on
TK-50 cartridge tape and archived at the AVF. The listings examined
on-site by the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN-also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAX INLEN 200 - Value of V

SBIGIDI (l..V-I -> 'A', V -> '1')

$BIG ID2 (l..V-l -> 'A', V -> '2')

$BIGID3 (l..V/2 W> 'A') & '3' &
(l..V-l-V/2 -> 'A')

$BIGID4 (1..V/2 -> 'A') & '4' &

(1..V-l-V/2-> 'A')

$BIG INT LIT (l..V-3 -> '0') & "298"

$BIG REAL LIT (l..V-5 -> '0') & "690.0"

$BIGSTRINGI "" & (l..V/2 -> 'A') & '",

$BIG STRING2 '"' & (l..V-l-V/2 -> 'A') & '1' & 1"

$BLANKS (l..V-20 -> '

SMAX LEN INT BASED LITERAL
"2:" & (l..V-5-> '0') & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..V-7-> '0') & "F.E:"

A-i

HAM PARAMETERS

SMAX_STRINGLITERAL '"' & (l..V-2 -> 'A') £ '"'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGNMENT 4

S•CONTLAST 2_147_483_647

$DEFAULTMEMi_SIZE 2_147_483_648

$DEFAULT_STOR UNIT 8

SDEFAULTSYS NAME TR_.RH32

$DELTADOC 2.0**(-31)

$ENTRYADDRESS 16#1#

SENTRYADDRESS1 16#2#

$ENTRY ADDRESS2 16#3#

SFIELD LAST 2_147_483_647

$FILETERMINATOR

SFIXED NAME NO SUCH FIXED TYPE

$FLOAT NAME NO SUCH FLOAT TYPE

$FORKSTRING

$FORM STkL:iG2 "CANNOTRESTRICTFILE_CAPACITY"

$GREATERTHANDURATION~
90_000.0

$GRFATERTHAN DURATION BASE LAST
TO_00 _000.0

$GREATERTHAN FLOAT BASE LAST
3.41E+38

$GREATERTHANFLOATSAFE LARGE
A.-238

A-2

MACRO PARAMET23tS

$GREATERTHANSHORTFLO&T SAFE LARGE
1.0138 -

$HIGHPRIOPITY 31

$ILLEGAL EXTERNAL FILE NAME1
NO FILES AT ALL_1

$ILLEGALEXTERNALFILE NAME2
NOFILES AT ALL 2

$INAPPROPRIATELINELENGTH
-1

$INAPPROPRIATEPAGELENGTH
-1

$INCLUDEPRAGWA1 PRAGMA INCLUDE ("A28006D1 .ADT")

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006F1.ADT")

$INTEGERFIRST -2147483648

$INTEGER LAST 2147483647

$INTEGERLASTPLUS_1 2147483648

$ INTERFACELANGUAGE ASSEMBLY

$LESSTHANDURATION -90_000.0

$LESS_THANDURATION BASE FIRST
-01UOOOOO.o

SLINETERMINATOR ASCII .LF

$LW_ PRIORITY 1

$MACHINECODESTATEMENT
FormatK_•'(TJR,trueR3);

$MACHINE_CODE_TYPE Format_R_Lit

SMANTISSADOC 31

SMAXDIGITS 15

$AX_ INT 2147483647

$MAX.INT PLUS.1 2147483648

SMININT -2147483648

SNAME BYTEINTEGER

A-3

9M~ PARAMEER1S

SNA*IELIST HNWRH32,T!I1_RH32

$NAMESPECIFICAkTICt4I ?N)FILES_1

$NAMESPECIFICATIC2N2 NOFILES 2

$zNAMESPECIFICATICtN3 NOFILES_3

$NEGBASEDINT 1600000000E

$NEWMEISIZE 2147483648

$NEWS7VRUNIT 8

$NEWSYSNAME HNfRH32

SPAGETERMINATIOR ASCI I FF

$RECORDDEFINITI(C4 RECORD MNIEMONIC:MNEMONIC D?]11M;
REG:REGISTER DJUM; END RECO)RD;

$RECORDINAM FORMAT R

$TASKSIZE 32

$TASKSTORAGESIZE 2048

$TICK 2.O**(-14)

$VAR.IABLEADDRESS 16#3FFD)O#

$VAR.IABLEADDRESSi 16#3FFF4#

$VARIABLEADDRESS2 16#3FFF8#

$YOUJRPRAGMA APART

A-4

APPMIDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-i

Inputs

Invocation

I -atzv (opdfa... Jflla.daa

Options
/dabug Generate debugging output. The/debug option causes the compiler to generate the ap-

propriate code and data for operation with the RISCAE Debugger.

/er-or log Generate error log file. The/z-orrrlog opton causes the compiler to
generate a log file containing all the error messages and warning messages produced during com-
pilation. The error log file has the same name as the source file, with the extension e.rr. For
example, the error log file for siMple. ada is szimple .err. The error log file is placed in the
current working directory. In the absence of the / list option, the error log information is sent to
the standard output stream.

/zum_checkosuppress Suppress numeric checking. The /u=_checkus_suppress option
suppresses two kinds of numeric checks for the entire compilation:

1. divbsloncheck

2. overflow;check

These checks are described in section 11.7 of the LRM. Using Inuu.checks .suppross re-
duces the size of the code. Note that there is a related adatrw option. /all_checks_sup-
press to suppress all checks for a compilation.

iall_chocksosuppreas Suppress all checks. The /aall_checksmt-ppress option suppresses
all automatic checking, including numeric checking. This option is equivalent to using pragma
suppress on all checks. This option reduces the size of the code, and is good for producing "pro-
duction quality" code or for benchmarking the compiler. Note that there is a related adat rwop-
tion, /nun-_hehcks-imppress to suppress only certain kinds of numeric checks.

/warr4.Lng...sprasss

Suppress warning messages. With this option, the compiler does not print warning messages about
ignored pragmas. exceptions that are certain to be raised at run-time, or other potential problems that
the compiler is otherwise forbidden to deem as errors by the LRM.

/no2delete
Keep internal form file. This option is for use by compiler maintainers. Without this option, the

compiler deletes internal form files following code generation.

/list
Generate listing file. The / list option causes the compiler to create a listing. The formats of and
options for listings are discussed in section 3.2.1.7. The default listing file generated has the same
name as the source file, with the extension . 1st. For example, the default listing file produced for
siaple. .ada has the name siMle. lst. The listing file is placed in the current working direc-
tory. In order to generate a listing in the continuous listing format, use the -lc switch rather than the

/i.st option. Note: /list also causes an error log file to be produced, as with the/er-
zo0_log option.

/ libra•zy
Default: ada. lib

Use alternate library. The /library option specifies an alternative name for the program library.

COMPILATICN SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

Inputs

Invocation

Iam& i p i ... ii

Options

/ compiler=compiler._name
Default: adra. lib

Use alternate compiler. The /compiler option specifies the complete (non
relative) directory path to the RISCAEAda compiler. This option overrides
the compiler program name stored in the program library. The / compi ler
option is intended for use by system maintainers.

/mainsuppress
Suppress main program generation step. The /main-suppress option sup-
presses the creation and additional code generation steps for the temporary
main program file. The /mainsuppress option can be used when a sim-
ple change has been made to the body of a compilation unit. If unit elabora-
tion order is changed, or if the specification of a unit is changed, or if new
units are added, then this option should not be used. The /main.sup-
press option saves a few seconds, but places an additional bookkeeping
burden on you. The option should be avoided under most circumstances.
Note that invoking bamp with the / load._suppress option followed by
another invocation of bamp with the /mainsuppress option has the
same effect as an invocation of bamp with neither option (/Iload,_sup-
press and /main_suppress neutralize each other).

/1 ibrary=library-name
Default: ada. lib

Use alternate library. The / library option specifies the name of the pro-
gram library to be consulted by the bamp program. This option overrides the
default library name.

/ loadsuppress
No link. The option suppresses actual object file linkage, but creates and per-
forms code generation on the main program file. Note that invoking bamp
with the option followed by another invocation of bamp with the /
main_suppres s option has the same effect as an invocation of bamp with
neither option. That is, and /mainsuppress neutrali2e each other.

RISCAE Software Users Manual

/ displaycommands

No operations. The / display_conmmands option causes the bamp com-
mand to do a "dry run": it pnnts out the actions it takes to generate the execut-
able program. but does not actually perform those actions. The same kind of
information is printed by the /printoperat ions option.

/ output=output-file-name
Use alternate executable file output name. The / output option specifies
the name of the executable program file written by the bamp command. This
option overrides the default output file name which is the main procedure
name concatenated to 8 characters with file extension . ab.

/ pass =llink-options
Pass options to the Linking Locator. The/pass option specifies the Linnking
Locator options which are passed directly to the Linking Locator.

/printoperations
Print operations. The /printoperations option causes the bamp command to
print out the actions it takes to generate the executable program as the actions
are performed.

/verbose Link verbosely. The /verbose option causes the bamp command to print
out information about what actions it takes in building the main program such
as:

"* The name of the program library consulted.

"* The library search order (listed as "saves" of the library units used by
the program).

"* The name of the main program file created (as opposed to the main
procedure name).

"• The elaboration order.

"* The name of the executable load module created.

RISCAE Software Users Manual

Inputs

Invocation

ZLL (PROGL.COL 1A =M I [... .1[EpaOn I

Linker Options

/LIB=(lib[,lib2.... Name library index files to be searched for unresolved externals. If the index
]) file indicates that a given external can be resolved by reading a particular

module, that module is included in the link. The Librarian section explains
how library files are built and managed. If a module name in the library index
file is not a full pathname, 1link searches for the module in the directory
containing the index file.

ILL=(ifn[,ifn2,...J) Read library index to be searched from file iftn. Index file ifn lists all libraries
that would be specified on the command line if the /LIB switch were used.

Note: The linker portion of the linking locator may not always search
the libraries in the order given. See the Library Searches subsection
for more details.

/SE Eliminate unreferenced segments in object modules during linking. This op-
tion has no effect unless the /US option is used.

/US=("sym","sym Mark the specified symbols as referenced before determining unreferenced
2"...) segments. The symbols may be global symbols or segment names. This op-

tion has no effect unless the /SE option is used.

Locator Options
Locate processing is done by default. If the / LO switch is p,,esent, locate pro-
cessing is not performed. When locate processing is performed, output is
written to PROG.AB unless the /0 switch is specified.

/C=cfn Read locator commands from file cfn.

/ LO Suppress locate processing (link only). If no ROM processing option is speci-
fied. write output to PROG.LN.

/P=n Pad the size of all segments by n bytes.

/P=n% Pad the size of all segments to n percent of their original size (n must be >

100).

RISCAE Software Users Manual

ROM Processing Options
ROM processing is performed if and only if some ROM processing option
is present. If locate processing is also performed. output is written to
PROG. AB. If only ROM processing is performed. the output is written to
PROG. RMP by default..

/B=segname Specify the name of the segment to be created. The default name is rom-
pOutSeg.

/ RC =classl [,class2Z...]
Specifies that all segments of the named class(es) will be processed.

/RS =segl[,seg2,....
Specifies that the named segment(s) will be processed.

Symbol Options

/K[="sym,sym2,...."]I
Keep only the named global symbols in the ouput module: suppress all oth-
ers. If no symbols are named, suppress all global symbols.

/ sP[="sym,sym2 "]
Suppress the named global symbols in the output module; keep all others.

Global symbols are generated by the compiler and assembler for global vari-
ables and procedures. The compiler's rules for forming global symbol names
are described in the RISCAE Software Programmer s Manual. Note that the
names specified in /SP and /K must be formed via these conventions.

Generally all global symbols must be retained in the output module to permit
any further references to be resolved during later links. Specific global sym-
bols may be suppressed to mask name conflicts. The switches which apply
to global symbols are mutually exclusive.

If no debugging is intended and the link is complete, all symbols may be
stripped. Stripping symbols reduces the amount of disk space required to
hold the output module and speeds up the execution of Ilink and the formatter.
It does not affect the size of the user program or the download hex file gener-
ated by the formatter.

Miscellaneous Options

/ 0 (Zero) Displays the version number of the executable (for technical support
purposes).

/ I[=ifnh This switch specifies that the names of input object modules are to be taken
from the file ifn. The input module names should be listed in the file. one per

RISCAE Software Users Manual

line. The name of the first module listed will be used as a default for
constructing the name of the linked output file. If ir$z is omitted, the names of
the files are read from the terminal.

/ O =ofn] This switch specifies the name of the output file. If the switch is omitted. out-
put will be written to PROG.LN or PROG.RMP, depending on the switches spe-
cified.

Verbose mode. Reports the following linking actions as performed:

* - The names of the object modules being read

* - The names of the library index files being searched.

* - The name of the output module.

/W This switch inhibits warning messages. If llink is not performing the lo-
cate function, the "unresolved externals" warning is the only warning mes-
sage that 1 ink can emit. This can safely be suppressed if unresolved exter-
nal references are expected. Other warning messages represent error
conditions and should not in general be ignored or suppressed.

RISCAE Software Users Manual

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
:haracteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type is range -2147483648 .. 2147483647;
type LONG INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type BYTEINTEGER is range -128 .. 127;

type FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;
type LCOG FLOAT is digits 15 range -1.79769E+308 .. 1.79769E+308;

type DURATION is delta 2**-14 range -86400.0 .. 86400.0;

end STANDARD,

Appendix F
This section constitutes Appendix F of the Ada LRM for this implementation. Appendix F from the LRM
states:

The Ada language allows for certain machine-dependencies in a controlled manner No machine-
dependent syntax or semantic extensions or restrictions are allowed. The only allowed implementa-
tion-dependencies correspond to implementation-dependent pragmas and attributes. certain ma-
chine-dependent conventions as mentioned in Chapter 13. and certain allowed restrictions on
representation clauses.

The reference manual of each Ada implementation must include an appendix (called Appendix F)
that describes all implementation-dependent characteristics. The Appendix F for a given imple-
mentation must list in particular:

1. The form. allowed places, and effect of every implementation-dependent pragma.

2. The name and the type of every implementation-dependent attribute.

3. The specification of the package SYSTEM.

4. The list of all restrictions on representation clauses.

5. The conventions used for any implementation-generated name denoting implementation-
dependent components.

6. The interpretation of expressions that appear in address clauses, including those for inter-
rupts.

7. Any restriction on unchecked conversions.

8. Any implementation-dependent characteristics of the input-output packages

In addition, the present section will describe the following topics:

9. Any implementation-dependant characteristics of tasking.

10. Other implementation dependencies.

F.1: Pragmas
F.1.1: Predefined Language Pragmas
This section describes the form, allowed places, and implementation-dependent effect of every predefined
language pragma.

F.1.1.1: Pragnmw ELABORATE, LIST, OPTIMIZE, PAGE, AND PRIORITY

Pragmas ELABOR,•T.•, LIST, OPTIMIZE, PAGE, and PRIORITY are supported exactly in the form. i.. the
allowed places, and with the effect as described in the LRM.

F.1.1.2: Pragma SUPPRESS

Form: pragma SUPPRESS (identifier (,[ON =>1 namel);
where the identifier and name. if present, are as specified in LRM B(14). Suppression of the follow-
ing run-time checks are supported:

ACCESS-CHECK

DISCRIMINANTCHECK

INDEX-CHECK

LENGTHCHECK

RANGE-CHECK

DIVISION HCHECK

OVERFLOW-CHECK

ELABORATION-CHECK

STORAGE-CHECK

Allowed Places: as specified in LRM B(14): SUPPRESS.

Permits the compiler not to emit code in the unit being compiled to perform various checking opera-
tions during program execution. The supported checks have the effect of suppressing the specified
check as described in the LRM except as follows.

" The suppression of DISCRIMINANTCHECK has no effect if the pragma is not
in the same declarative part as the type to which it applies.

" The suppression of ELABORATION-CHECK has no effect on a task body.

" The suppression of STORAGEERROR does not suppress the check that an al-
locator does not require more space than is available.

F.1.1.3: Pragma INLINE

Form: Pragma INLINE (subprogram_namecomma list)

Allowed Places: As specified in LRM B(4)- INLINE

Effect: If the subprogram body has already been compiled, or is in the same compilation unit as the call, and
if the subprogram does not contain nested subprograms, the code is expanded in-line at every call
site and is subject to all optimizations. If the subprogram to be inlined is recursive, only the first call
is inlined and the recursive call is a normal call.

Exception handlers for the INLINE subprogram are handled as for block statements.
Use: This pragma is used either when it is believed that the time required for a call to the specified routine

will in general be excessive (this for frequently called subprograms) or when the average expected
size of expanded code is thought to be comparable to that of a call.

F.1.1.4: Pragma INTERFACE

Form: Pragma INTERFACE (language..name, subprogram name[, "link-,name"])
where the language-name must be assembly, builtin. or internal. and the subprogramname is as
specified in the LRM B(5). The optional linkjiame parameter is a string literal specifying the entry
point label of the non-Ada subprogram named in the second parameter. If linkaname is omitted,
then inkname defaults to the value of subprogramname.

Allowed Place: As specified in LRM B(5) : INTERFACE

Effect: Specifies that a subprogram will be provided outside the Ada program library and will be callable
with a specified calling interface. Neither an Ada body nor an Ada bodystub may be provided for
a subprogram for which INTERFACE has been specified. link-nwme is used as the entry point label
of the subprogram. The language-rame builtin and internal are reserved for use by RISCAE com-
piler maintainers in run time support packages.

Use: Use with a subprogram being provided via another program language and for which no body will
be given in any Ada program.

The calling convenuons for an Ada program calling a pragma INTERFACE (assembly) subprogram
are according to the RISCAE Run Time Model described in Appendix C of the RISCAE Software
Programmer's Manual.

F.1.1.5: Pragma PACK

Form: Pragma PACK (tpe.simple-name)

Allowed Places: As specified in LRM 13.1 (12)

Effect: The effect of pragma PACK is to minimize storage consumption by discrete component types whose
ranges permit packing. Refer to the RISCAE Software Programmer's Manual for more information
about the effect of pragma PACK.

Use: Pragma PACK is used to reduce storage size. Size reduction usually implies an increased cost of
accessing components. The decrease in storage size may be offset by increase in size of accessing
code and by slowing of accessing operations.

F.1.1.6: Pragmas SYSTEM, NAME, STORAGE_ UNIT, MEMORY-SIZE, CONTROLLED

These pragmas are not supported and are ignored

F.I.I.7: Pragma SHARED

Form: pragma SHARED (variable.simple.name)
where variabr.simpie_name is of any scalar type except long float.

Allowed Places: As specified in LRM B(2): SHARED

Effect Direct reading and direct updating of the specified variable must be implemented as an indivisible
operation. In addition, the implementation must ensure that ear'h reference of the variable is made
directly from/to memory (i.e. not from a temporary copy of t ' variable).

Use: This is used to cause every read or update of a variable to be a "synchronization" point for that vari-
able.

F.1.2: RISCAE-Defined Pragmas
F.I.2.1: F.1.2.2: Pragma APART

Form: pragma APART (variable,_name, segnamel)
where variabename must refer to a static object, (i.e. a variable declared in a library unit package
specification or body, or in a package specification or body contained in a library unit package) and
segnate, if provided, must be a string literal which specifies the name of the segment containing
the object.

Allowed Places: Pragma APART is allowed in the declarative region of a library unit package specification
or body, or in a package specification or body contained in a library unit package. The declaration
of the variable must be in the same declarative region as the pragma and must proceed the occurrence
of the pragma.

Effect: The object will be placed in a segment mat is not included in group "data" and consequently, is ad-
dressed directly using an APART data base register rather than the global base register (GBR). If
segname is provided, it is used as the name of the segment for the object. Otherwise, the object is
located in segment "aidata" for initialized objects or "audata" for uninitialized objects.

Use: The RISCAE run time model specifies that static objects and constants be addressed using base offset
addressing mode with the global base register (GB R) and that there is a limit of 64K bytes of total
size of such data. Pragma APART can be used to specify objects which are not to be addressed using
the global base register (GBR). Pragma APART may be used if specific data items need to be located

further APART than 64K bytes or in a large program for which the total size of stauc objects and
constants is larger than 64K bytes. Refer to the RISCAE Programmer's Reference Manual for more
information about location and addressing of static objects.

F.1.2.3: Pragma INDIRECT

Form: pragma INDIRECT (subprogram-name)
where subprogram name is the name of a subprogram which is declared in the same declarative
region. A body is not allowed for a subprogram to which pragma INDIRECT applies.

Allowed Places: Pragma INDIRECT must appear within the same declarative part as the subprogram to
which it applies, following the subprogram, and prior to the first use of the subprogram.

Effect: A call to a subprogram to which pragma INDIRECT applies will cause the compiler to generate a
call to the address provided by the first parameter of the subprogram with parameters 2 through N
of the subprogram being treated as parameters I through N- I. This provides the ability to save the
address of a subprogram in a variable or data structure so that it may be called later.

Use: This is used in run time system code. It should not normally be used in application programs.

F.1.2.4: Pragma CONTIGUOUS

Form: pragma CONTIGUOUS (record n'pe.name)

Allowed Places: Pragma CONTIGUOUS must appear within the same declarative part as the type to which
it applies, following the type declaration but prior to any forcing occurrence of the type.

Effect: Pragma CONTIGUOUS alters the layout of an Ada discriminant record type. Normally an array
whose bound depends on a discriminant is mapped on to a pointer to a dynamically allocated string.
This pragma forces the compiler to lay out the record and array in a single object.

Use: This is used in run time system code and should only be used as it is used in the run time. It should
not normally be used in application programs.

F.2: Standard Types and Implementation-Dependant Attributes
There are no implementation-dependent attributes provided by the RISCAE Ada compiler. The fol-

lowing sections define the standard types supported by the RISCAE Ada compiler and the implementation-
dependent values of their attributes.

F.2.1: Standard Types
The following standard types are defined for the RISCAE RH32-targeted compiler.

type byte-integer is range -128 .. 127;

type short-integer is range -32768.. 32767;

type integer is range -2147483648 .. 2147483647;

type long-integer is range -2147483648 .. 2147483647;

type float is digits 6 range -3.40282E+38 .. 3.40282E+38;

type long-float is digits 15 range - 1.79769E+308.. 1.79769E+308;

type duration is delta 2"*-!4 range -86400.0.. 86400.0;

F.2.2: Implementation-Dependent Attributes
This section describes the implementation-dependent values of the attributes of the standard types.

Type INTEGER

INTEGER'SIZE =32 -- bits

INTEGER'FIRST =-(2**31) --- 2.147.483.648
INTEGER'LAST =(2**31 -) - - 2,147,483,648

Type LONG-INTEGER
INTEGER'S[ZE 32 - bits
INTEGER'FIRST = -(2*3 1) --- 2.147,483.648
INTEGER'LAST = (2**3L1 -) -- 2,147,483,648

Type SHORTINTEGER.
SHQRT-JNTEGER'SIZE = 16 - hits
SHORTINTEGER'FIRST = -(2** 15) --- -32.768
SHORT-JNTEGER'LAST =(2** 15 - 1) - - 32.767

Type BYTEJNTEGER.
BYTEINTEGER SIZE -8 - bits
BYTE-JNTEGER'FIRST = -2**7) --- -128
BYTEJNTEGER'LAST =(2**7 - 1) - - 127

Type FLOAT.
FLOAT'SIE = 32 - -bits.
FLOATDIGITS = 6
FLOAT MANTISSA = 21
FLOATrEMAX = 84
FLOA'rEPSELON = 2.0**(-20)
FLOATSMALL = 2.O**(-85)
FLOATLARGE = (1.0 - 2.0**(-2 1))*2.0*$84
FLOAT'MACHINE..ýROUNDS = uuje
FLOArMACHINE-OVERFLOWS = true
FLOATMACHINE..RADIX =2
FLOATMACHINEMATIMSSA = 24
FLOAT"MACHINE-EMAX = 128
FLOArMACHINEEMIN = -125
FLOAT'SAFE,.EMAX = 125
FLOAT'SAFE-SMALL = 2.0**(-126)
FLOAT'SAFE-.LARGE = (1.0 - 2.0*0-2 1)*2.0** 125

Type LONG-FLOAT.
LONG-JLOAT'SIZE = 64 -- bits.
LONG-FLOAT'DIGITS = 15
LONG-FLOAT'MANTISSA =51
LONGFLOArEMAX = 204
LONGFLOArEPSILON = 2.0**(-50)
LONG-FLOAT'SMALL, = 2.0**(-205)
LONG..YLOArLARGE = (1.0 - 2.0**-5l1)*2.0**204
LONGJLOAT'MACHINE..ROUNDS = true
LONGYLOAT'MACHINE_..VERFLOWS = true
LONGYLOAT*MACHINERADIX =2
LONG-JLOAT'MACHINE_.MANTISSA = 53
LONGJLOAT'MACHINEEMAX = 1024
LONGYLOATMACHINE-EMIN =-1021
LONG-JLOArSAFE..EMAX = 1021
LONG..YLOAT'SAFE..SMALL = 2.0**(-1022)

LONGFLOAT'SAFELARGE = (1.0-:.0"*-5)*2.0** 1021

Type DURATION.
DURATION'DELTA = 2.0"*(-14) - -- seconds
DURATION'FIRST = -86_400.0
DURATION'LAST = 86_400.0
DURATION'SMALL = 2.0"*(-14)

Type PRIORITY.
PRIORITY'FIRST =
PRIORITY'LAST = 31

F.3: Package SYSTEM
package SYSTEM is

type ADDRESS is new integer;

NULL-ADDRESS: constant ADDRESS:= 0:

type NAME is (hnw.rh32. trwjrh32);

SYSTEMNAME: constant NAME := trw rh32;

STORAGE-UNIT: constant := 8:
MEMORYSIZE: constant := 2**31; - - In storage units

- - System-Dependent Named Numbers:

MININT• constant:= -2147483648,
MAXINT: constant := 2147483647;
MAX-DIGITS constant := 15;
MAX-MANTISSA: constant := 31;
FINE-DELTA : constant := 2.0"*(-31);
TICK : constant := 2.0"*(-14),

-- Other System-Dependent Declarations

- - Legal values for pragma PRIORITY.
- - There are 31 user priority levels.
- - The default priority, if not assigned by pragma, is 0.
subtype PRIORITY is INTEGER range 1 .. 31;
- - NOTE: The RISCAE kernel supports higher priorities
- - under which hardware interrupts are disabled.

end SYSTEM;

F.4: Restrictions on Representation Clauses
This section describes the list of all restrictions on representation clauses.

"NOTE: An implementaton may limit its acceptance of representation clauses to those that can be
handled simply by the underlying hardware.... If a program contains a representation clause that is not ac-
cepted Iby the compilerl, then the program is illegal." (LRM 13.1 (10)).

F.4.1: Length Clauses
Size specification: TSIZE.

The size specification may be applied to a type T or first-named subtype T which is an access type,
a scalar type. an array type or a record type.

AJ-00536/07 has altered the meaning of a size specification. In particular. the statement from the
LRM 1 3.2.a that the expression in the length clause specifies an upper bound for the number of bits
to be allocated to objects of the type is incorrect. Instead, the expression specifies the exact size for
the type. Objects of the type may be larger than the specified size for padding. Note that the specified
size is not used when the type is used as a component of a record type and a component clause specify-
ing a different size is given.

If the length clause can not be satisfi&d by the type, an error message will be generated. In addition,
the following restrictions apply:

access type: the only size supported is 32.

integer, fixed point, or enumeration type: minimum size supported is 1. the maximum size
that is supported is 32, the size of the largest prede-
fined integer type. Biased representation is not
supported.

floating point type: the sizes supported are 32 and 64. Note that the
size must satisfy the DIGITS requirement. No
support is provided for shortened mantissa and/or
exponent lengths.

Specification of collection size: T'STORAGESIZE.

The effect of the specification of collection size is that a contiguous area of the required size will be
allocated for the collection. If an attempt to allocate an object within the collection requires more
space than currently exists in the collection. STORAGEERROR will be raised. Note that this space
includes the header information.

Specification of storage for a task activation: T'STORAGE_SIZE.

The value specified by the length clause will be the total size of the stacks (primary and secondary)
allocated for the task.

Specification of small for a fixed point type : T'SMALL.

The value of TSMALL is subject only to the restrictions defined in the LRM(I 3.2).

F.4.2: Enumeration Representation Clauses
Enumeration representation clauses are supported with the restriction that the values of the internal

codes must be in the range of MINNT.. MAX_INT.

F.4.3: Record Representation Clauses
Record representation clauses are supported with the following restrictions:

* Allowed values in the alignment clause are I (byte-aligned). 2 (half-word
aligned), 4 (full-word aligned) and 8 (double-word aligned).

In the component clause, the storage unit offset (the staticsimpleexpression
part) must be a word offset (i.e. 0 or a positive multiple of 4). The range of bits
specified has the following restrictions: if the starting bit is 0. there is no limit
on the value for the ending bit: if the starting bit is greater than 0. then the end-
ing bit must be less than or equal to 31.

The actual size of the record object (including its use as a component of a record or array type) will
always be a multiple of words (32 bits) with padding added to the end of the record. if necessary. User-speci-
fled ranges must contain at least the minimal number of bits required to represent a (bit-packed) object of
the corresponding type; e.g. to represent an integer type with a range of 0.. 15. at least 4 bits must be specified
in the record representation specification range. For more information about record layout, refer to the RIS-
CAE Software Programmer's Rzference Manual.

F.4.4: Address Clauses
An address clause may be supplied for an object (whether constant or variable), a subprogram, or

a task entry, but not for a package or task unit. If an address clause is supplied for a subprogram. a body is
not allowed for that subprogram.

An interrupt entry (address clause for an entry) may not have parameters.

F.5: Implementation Dependent Components
There are no implementation-generated names denoting implementation-dependent (record) com-

ponents.

F.6: Interpretation of Expression in Address Clauses
This section describes the interpretation of expressions that appear in address clauses, including

those for interrupts. System.Address is declared to be new INTEGER, hence, takes values from -2**3 I to
2**31 - 1. For address clauses on objects or subprograms, these values will be interpreted as (virtual) ad-
dresses in target memory as follows:

address >= 0 implies (virtual) address == address
address < 0 implies (virtual) address = (2**32) + address

For an object:
The meaning of the value given by an address clause for an object is the (virtual) address in the target
memory assigned to that object.

For a subprogram:
The meaning of the value given by an address clause for a subprogrfan is the (virtual) address in target
memory to which the program will branch when the user prograim makes a call to the subprogram.
The user must supply the code to be executed and ensure that it is located at the indicated address.

For an entry:
The TRW RH32 SCU provides 12 interrupt levels, 0 to 11 with level 0 the highest priority, of which
8 are external interrupts, 3 are timer interrupts, and I is reserved by the hardware. If the value given
by an address clause for a task entry is in the range 0.. 11, the entry will be called when the interrupt
corresponding to that interrupt level is signaled. Two of the 3 timer interrupts, interrupt levels 2 and
4, are reserved for use by the RISCAE kernel in the implementation of package CALENDAR and
to support Ada delay statements. If an interrupt entry attempts to use either of these interrupt levels,
PROGRAMERROR will be raised during activation of the task containing the interrupt entry.

The RISCAE kernel also provides an INTERFACE which allows an application to cause a software
interrupt to occur. Values in the range 12 .. 19 are provided for software interrupts.

Any value outside the range of 0.. 19 will cause PROGRAMERROR to be raised during acuvauon

of the task containing the interrupt entry.

F.7: UNCHECKED CONVERSION
There are no restrictions on the use of UNCHECKED-CONVERSION. Conversions between ob-

jects whose sizes do not confirm may result in storage areas with undefined values.

F.8: Input-Output
This section describes implementation-dependent characteristics of the language predefined input-

output packages.
"* The RISCAE Ada run time provides no support for external files nor for STAN-

DARDJINPUT. The predefined exception USEERROR will be raised if an
attempt is made to create or ,.,,zn any external file. The predefined exception
END_ERROR will be raised if an attempt is made to read STANDARDINPUT.
Support for STANDARD-OUTPUT is implemented assuming the presence of a
console 1/O device which accepts output characters. The RISCAE simulator pro-
vides the effect of a console 1/O device which is used to implemert STAN-
DARDOUTPUT. (Implementation of STANDARD_OUTPUT for the RH32
ADM is TBD).

" Line terminator is ASCII.LF (line feed); page terminator is ASCII.FF (form
ieed).

" The packages SEQUENTIALJO and DIRECT_10 cannot be instantiated with
unconstrained composite types or record types with discriminants without de-
faults.

"* Package LOWLEVEL_10 is not provided.

F.9: Tasking
This section describes other implementation-dependent characteristics of the tasking run-time pack-

ages.

F.9.1: Scheduling of Ada tasks
The scheduler of the Ada run-time tasking system runs tasks of equal priority in the order that they

became eligible to run and allows them to run until blocked or until interrupted by the eligibility of a task
of higher priority. A task whose priority is higher than the task currently running may be made eligible to
run by an interrupt or by the expiration of a delay statement. Such an event will cause the currently running
task to be immediately blocked so that the higher priority task may run.

F.9.2: Implementation-Dependent Termination of Library Unit Tasks
Even though a main program completes and terminates (its dependent tasks, if any, having termi-

nated), the elaboration of the program as a whole continues until each task dependent upon a library unit pack-
age has either terminated or reached an open terminate alternative. See LRM 9.4(13).

F.9.3: Implementation of Calendar
Support for implementation of Ada delay statements and for the function CLOCK in package CAL-

ENDAR are provided by the RISCAE kernel. The kernel implementation uses RTC (Real Time Clock) and
interrupt levels 2 and 4 in the SCU of the TRW RH32 processor.

F.IO: Other Matters
This section describes other ituplementation-dependent characteri.:;ics of the system.

Restnctions on main program:
Any parameterless procedure which is a library unit may be a main program (LRM 10.1:8).

Order of compilation of generic bodies and subunits (LRM 10.3:9):
Body and subunits of generic must be in the same compilation as the specification if instantiabons
precede them (see A4-00257/02).

